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Chapter 1

Introduction

Safe air is a most vital environmental resource. Its quality is especially critical in an

enclosed environment such as spacecraft, submarine, airliner cabin. The importance

of the closely related issue of the indoor (workplace) air quality has been repeatedly

emphasised in the last twenty years (Berglund et al., 1986; Berglund et al., 1989). It

is known (Molhave et al., 1986) that only a slight degree of air contamination can

have an acute health and performance impact on humans.

In addition to background contamination, resulted from material offgassing, mi-

crobial growth and normal human activities (James and Coleman, 1994), there is

a risk of an accidental contamination release. In the case of spacecraft and other

inclosed environments an unexpected event can lead to mission failure or even in-

capacitation and death since there may be a significant time lag before personnel

evacuation becomes possible. An early detection of the contamination event can

provide the critical time necessary to take mitigating actions, or to arrange for safe

evacuation.

Recent history of space exploration presents some examples of the possible sources

of the accidental air contamination (James et al., 1994). One such source is thermod-

egradation of electronic components in flight hardware (Todd et al., 1993; Todd et al.,

1994). It was reported that during Space Shuttle flight STS-28 0.1 grams of poly-

tetrafluoroethylene (PTFE, or Teflon by its trademark), used as a wiring isolation

was pyrolyzed within 1.5 seconds. The crew experienced no adverse health effect.



However,it was subsequently estimated that a pyrolysis of 2 grams of PTFE would

have affected health and performance of the crew.

Another example of accidental contamination is the fire extinguishant (C02) re-

lease due to a containment failure, and microbial growth resulting in the release of

volatile pollutants into air (Coleman and James, 1994). Based on the experience

with the Shuttle, it is estimated that minor contamination events will occur with a

frequency of once in 30 days, and moderate accidents (those causing symptoms in

the crew) will occur once per year. Details are not available on the accidental re-

leases into Russian spacecraft. However, it is known that air contamination problems

have nearly ended a mission (Covault, 1983) and that formaldehyde exposures are a

concern (Peto, 1981).

Currently utilized spacecraft air revitalization systems are designed to maintain

equilibrium concentrations of contaminants within limits prescribed by spacecraft

maximum allowable concentrations (SMACs) (National Research Council, 1994 and

1992). The monitoring of the Space Shuttle air is done off-line, and involves sampling

of the spacecraft air immediately before launch and late in the mission (James et al.,

1994), with additional samples taken if crew suspects a contamination problem, and

subsequent analysis after spacecraft landing. The analysis of taken samples shows

that air quality is consistently within the target region. At the same time, this

monitoring technique failed to reflect some know contamination problems (such as

abovementioned PTFE thermodegradation), or provided inconclusive results. It is

also insensitive to the temporal and spatial variations in contaminant concentrations.

At the same time, it is known that temporal variation of some compounds, such

as carbon dioxide, can be quite large because the efficiency of the removal system

degrades quickly when the reactant bed is almost consumed. The spatial variation

of the contaminant concentration to our knowledge has not been estimated, but one

can predicted that it can be significant due to nonuniformity of the air flow within

habitat. This assumption is supported by information (Savina, unpublished data) on

large spatial variations of the contaminant concentrations throughout the Mir Station

under normal operating conditions.



NASA plansfor extendedhumanpresencein SpaceStation andbaseson the Moon

and Mars in the 21stcentury (White and Lujan, 1989)raisesseriousquestionsabout

the adequacyof current air revitalization and monitoring system for long duration

missions.Added to the risk of accidentalcontaminations,there is a concern(Logan,

1989)that SpaceStationwouldbecomeanexampleof runawaytight (or sick)building

syndrome(Godish,1995;M¢lhave,1989),sincetherewill not be a luxury of frequent

returns to Earth for thorough cleaning,characteristic to the SpaceShuttle missions.

It becomesapparent that a new generationair revitalization systemshouldsup-

port suchadvancedfunctions asreal-time air quality monitoring; health risk evalua-

tion of the current situation and prediction of the future risks basedon the extrap-

olation of the current trends; an early detection of a contamination eventwhich in

turn allowsfor preventivemitigation of the health hazard; and isolation of the con-

tamination source,which would facilitate repair and clean-up. Essentialcomponents

of suchsystemaregassensors,high performanceon-board computerand algorithms

and methodswhichprovide requiredsystemfunctionality. The analysisof existing gas

sensorstechnology(Kocache,1994;Barry and Brackbenbury,1991)indicate that the

instrumentation neededfor on-line multicomponent gasanalysisis alreadyavailable.

In fact, a prototype combustionproducts analyzerhasbeenflown as part of NASA

program to developcapability to detect combustionproducts (Jamesand Coleman,

1994). More advanced instrumentation can be expected to become available in the

near future, including real-time particle detector suitable for space flights (NASA,

1989). At the same time, a computing power of available workstations suitable for

on-board implementations is constantly increasing.

In this report we present our progress, results and findings in development of

an integrated air quality modeling, monitoring, fault detection and isolation system

(Figure 1). The focus of this year efforts was on development of distributed model of

the air contaminants transport, the study of air quality monitoring techniques based

on the model of transport process and on-line contaminant concentration measure-

ments, and sensor placement. In the next chapter we discuss different approaches to

the modeling of the spacecraft air contamination, and propose a three-dimensional



distributed parameterair contaminant dispersion model, applicable to both laminar

and turbulent transport. We further proposed a two-dimensional approximation of a

full scale transport model based on the spatial averaging of three-dimensional model

over least important space coordinate. A computer implementation of the transport

model is considered in the third chapter where we present a detailed development of

two- and three-dimensional models illustrated by contaminant transport simulation

results. In the fourth chapter we suggest the use of a well established Kalman filter-

ing approach as a method for generating on-line contaminant concentration estimates

based on both real time measurements and the model of contaminant transport pro-

cess. We also show that high computational requirements of the traditional Kalman

filter can render difficult its real-time implementation for high-dimensional transport

model and propose a novel Implicit Kalman filtering algorithm which is shown to lead

to an order of magnitude faster computer implementation in the case of air quality

monitoring. Section five discusses sensor placement. In Conclusions we summarize

our results, and outline the direction for next year's research.
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Figure 1.1: Integrated air quality monitoring system
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Chapter 2

Dispersion Model of the Air

Contaminants

2.1 Lumped and distributed models

Simulations of a spread, introduction and removal of airborne contaminants creates

the basis for the solution of the entirecomplex of problems of monitoring and envi-

ronmental control of a space habitat.

Generally, there are two differentapproaches to simulation. In the firstone, each

separate volume of a habitat, such as a cabin or a room, is represented as a well

mixed tank with uniform distributionof allparameters. Mathematical models of this

approach are a system ofordinary differentialequations,resultingfrom the application

of the macroscopic mass balances (National Academy of Sciences,1981). The result

of simulation is time change of volume-averaged concentration of differentgaseous

and airborne particulatecontaminants, which depend on the rate of contaminants

generation and removal. These models are relativelysimple to develop and apply but

are characterized by low resolutionand accuracy.

An example of a computer model of this type is Trace Contaminant Control

Simulation (TCCS) computer program (Perry,1993),which was specificallydesigned

to facilitatethe development of a spacecraft contamination control hardware and

predictionof itsperformance.
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Another example is Computer Aided System Engineering and Analysis (CASE/A)

modeling package for environmental control and life support system (ECLSS Integra-

tion Analysis, 1990), developed at McDonnell Douglas Space Systems Company. Al-

though it also uses a well-stirred tank as an underlying representation of the habitat's

volume, it belongs to a class of multi-tank models of indoor air quality (Ozkaynak

et al., 1982; Ryan et al., 1988), and provides means for simulation of a number of

connected tanks. This allows to model of different configurations with more than one

interconnected volumes in habitat or to represent a single volume as a combination

of well stirred-tanks thus increasing resolution and reliability of simulation results.

An alternative approach is to base the computer model on the fundamental dis-

tributed laws of physics. This results in the mathematical description of the process

in the form of partial differential equations with appropriate initial and boundary

conditions, and gives an exhaustive information on the distribution of contaminants

throughout the spacecraft. However, its complexity and high computational require-

ments are obvious shortcomings.

In the analysis of the environmental risk of a space mission, the assessment of the

effects of chronic inhalation of low concentration contaminants is at least as important

as the analysis of extreme concentrations as a result of on-board accidents. Models

of the spacecraft modules, based on the assumption of well mixed volumes cannot

account for fluctuations in concentrations within a habitat. At the same time, effect

of a higher than average concentration of contaminants and spatial distributing of the

concentration can be significant, especially for long duration space missions. A dis-

tributed model is also needed to precisely identify unknown source of contamination.

All these factors lead to a conclusion that the perspective of long-term and remote

space missions requires the development of sophisticated models of the space habitat

which can be run in real time, and serve as a basis for monitoring and decision mak-

ing systems far more sophisticated than current detection and environmental control

systems.



2.2 Three-dimensional model of the contaminant

dispersion

According to Fick's law of molecular diffusion (Bird et al., 1960), binary mass trans-

port process with isotropic diffusion can be described by the following convection-

diffusion equation:

Oq

-_ + (V . qU) = (V . DMVq) + F,

U = (u,v,w), (2.1)

with an appropriate initial and boundary conditions, where q is the instantaneous

contaminant concentration distribution within spatial domain fl, DM is the molecular

diffusivity of contaminant in the air, U is the velocity distribution of the air flow, F

is a source function describing generation and removal of the contaminant, and V is

the vector differential operator.

If the contaminant fraction in the air is low, equation (2.1) can also be used to

describe a multicomponent transport. In this case, the spread of each contamination

component is described by a model in form of equation (2.1). The transport models for

different contaminants can be coupled through a generation term F, and a molecular

diffusivity DMi in general depends on a particular type of the contaminant species.

If the density of the air is constant, equation (2.1) in rectangular coordinates yields

i)q Ouq Ova Owq = (V. DMVq) + F, (2.2)+ + o---T-
x = (x,y,z) e_.

An appropriate boundary conditions for equation (2.2) correspond to impermeable

wall, air duct, open hatch and completely or partially permeable wall (Table 1). For all

practical purposes, source function F can be adequately described by the combination

of pointwise contaminant sources and sinks:

N.o N,i

F = _, FiS°(t)&(x - x_ °) - _, F_'(t)_(x - xt'), (2.3)
i=l i:1

where (N,o, F_'°, m,'.°) and (N,i, Fi 'i, x$ i) are the number, capacity and location of a

point source and sink, m = (x, y, z), and 6 is the Dirac delta function.

8



Equation (2.2) is directly applicableto the laminar transport of an airborne con-

taminant. Though results of Sonand Barker, 1993suggestthat spacestation air

flowswill be mainly laminar, turbulent transport can play a significant role at least

in someparts of the spacecrafthabitat. Thus, it is important to modify (2.2) in order

to accommodatethe caseof the turbulent transport.

For the caseof turbulent flow, both the flow velocity U - (u, v, w) and the

concentration q must be treated as stochastic quantities. Following the framework

of semi-empirical theory of turbulent diffusion (Bird et al., 1960) we introduce the

following notation:

u =

q = (2.4)

where _r, q are time smoothed values and U', q' are instantaneous fluctuations. Since

we are interested in a meaningful trend of contaminant concentration, rather than its

stochastic fluctuations, we average the Fickian model (2.2) over a time interval AT

long enough for the integral of instantaneous fluctuations to vanish. This yields

04
-_ + V . (q'U') + V . ((t(J) = (V . DMVFt) + f', (2.5)

where an overbar denotes a time averaged value. According to semi-empirical theory

of turbulent transport, the fluctuation moment q'U' can be approximated by the

gradient relationship

q'U' = --DTV(t, (2.6)

where DT is an empirical coefficient of eddy or turbulent diffusivity. Since

DM << DT, (2.7)

molecular diffusion can be ignored, and resulting three-dimensional turbulent trans-

port model becomes

0_
+ V. (q(J) = (_. DTW_t) + F. (2.8)

It is important to note that the models for laminar (2.2) and turbulent (2.8)

transport are of the same mathematical form. This allows us to use the same computer

model for laminar, turbulent and mixed contaminant transport cases.
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2.3 Two-dimensional approximation

In an attempt to develop a model which gives sufficient details about contaminant

concentration profile and at the same time is simple enough to be run on-line, a two-

dimensional approximation of the transport model (2.2) was previously suggested

(Todd et al., 1993; Todd et al., 1994). The transport model can be simplified by

averaging equation (2.2) over least important spatial coordinate. Assuming the aver-

aging over z, define the height averaged concentration:

lfo"q2 = -_ qdz, (2.9)

where H is the habitat's height. Further assume that DM does not change with z,

and that (u, v) is a z-averaged air velocity vector. Integrating (2.2) with respect to

z, and accounting for boundary condition w(O) = w(H) = 0 obtain

Oq_ i)uq2 Ovq2 i)_ i)q2 O n Oq2

where

(2.10)

fo H [ Oq I Oql ] (2.11)f = Fdz + DM _z H OZ 0 "

Similarly, a turbulent dispersion is approximated by the following two dimensional

model:

0q_ 0fiq2 0_q2 0 n 0q2 0_ 0_2

+ (2.12)

where _2 is height averages and time smoothed contaminant concentration.

This approach provides the flexibility of using different two-dimensional approxi-

mations (resulted from the averaging along different spatial coordinates), depending

on the current needs, or to simultaneously run more than one approximation to obtain

more detailed information about the spread of the contaminant.
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Chapter 3

Computer Implementation of the

Transport Model

3.1 Two-dimensional model

The transport equation with an appropriate boundary conditions is used to develop

a computer model of the transport process.

First, using finite difference or finite element method find an approximation of

the spatial partial derivatives in the model equation. For two-dimensional model

(equation (2.10) or (2.12)) let matrix A is a discrete analog of the spatial operator

0 0 0 0 Ou Ov

£x(') = -_xDM-_x + -_y DM fly OX Oy'

A semi-discrete analog of (2.10) in a vector formobtained using finite differences.

can now be written as

d_qq= Aq + f, (3.1)
dt

where q(t) = [ql,...,q,] is a finite difference approximation of the concentration

q2(x, y, t), f(t) is an approximation of the source function f(x, y, t) plus a contribution

from the boundary conditions. If/:x is approximated using five point stencil, the

resulted operator A is n-byon sparse matrix with five or less non-zero elements on

each row. Dimension n of the system (3.1) depends on the spatial mesh used to

approximate/:x.
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Temporal discretizationof equation (3.1)concludes the development of the dis-

creteanalog of the transport equation (2.10).In order to ensure numerical stabilityof

the computer implementation, fora large range of time steps At itisadvisable to use

implicitapproximation of the time derivativein (3.1).For instance,Crank-Nicolson

approximation scheme resultsin the followingunconditionally stablediscretemodel:

Alqm+l = A2q,_ + fro,

where m isa time index, 3",,= f(raAt), and

A1 = Et

(3.2)

where I is a unit matrix. Note that if coefficients of (2.10) are time dependent,

matrices A1 and A2 will change with m.

The sparsity of the system (3.2) can be exploited to yield an efficient implemen-

tation of the computer model. The use of the indexed storage of matrices A1 and ,42

leads to a significant reduction in the required computer memory, while utilization of

the structure specific methods of matrix manipulation results in an efficient solution

engine for linear system (3.2).

The details on development and implementation of two-dimensional transport

model based on 5-point stencil approximation of spatial derivatives, Crank-Nicolson

approximation in time domain, and spatial solution methods, which take advantage

of a sparse structure of the discrete transport model are given in the next subsection

The finite elements method leads to the similar results. A spatial discretization

in this case yields the following semi-discrete equation

(3.3)
dq

M-_ = Ale q + fie,

where M and A/e are usually called mass and stiffness matrices. They are sparse,

and depend on weight and element functions of the chosen finite element method,

and on the ordering of the components of q. A source term fie is an approximation

of f(x, y, t) plus a contribution from the boundary conditions.

12



As before,a discreteanalogis obtained asa result of the temporal approximation

of the abovesemi-discreteequation. An implicit discretizationyieldsa discretemodel

in the form of equation (3.2), whereA_ and A2 depend on the specific scheme. One

possible expression is

M 1 AI_)A1 = _ 2

A2 = _-_+ _A:_ ,

obtained using central difference approximation in time domain.

3.1.1 Computer implementation of two-dimensional trans-

port model

The model equation (2.10) of the two-dimensional transport with appropriate bound-

ary conditions is used to develop a computer model of the transport process. First,

using finite difference approximations of the partial derivatives with respect to spatial

coordinates we obtain a semi-discrete analog of the model equation. The diffusion

operator is approximated as

7)02q2__ ,.., 7)n,pqn+l,v - 2qn,p + qn-l,v (3.4)
Ox 2 Ax 2 '

7) c02q_ qn,p+l - 2qn,p + qn,v-1
" 7)n,v Ay2 , (3.5)

where q=,p _ q2 (t, nAx, pay), Ax and Ay are discretization steps along coordinates x

and y, 7)_.p corresponds to 7) = {DM(nAx, pAy), DT(nAx, pAy)}, and the subscript

is used to specify a point on the spatial mesh {(n, p) I n = 1, N, p = 1_}.

Since central difference approximation of the convective operator is known to cause

non-physical oscillation of the numerical solution, the following upwind differencing

scheme is used:

cOuq2 q_E.,_ qn,W (3.6)
C_X _ Un'P A X '

where

13



Similarly,

where

w _ qn-x,p if una, > O,

qn,p -- _ qna, if un,p < O.

S N

Ovq2 ,,, vn qnm.__ q_,p
Oy '_ A y '

(3.7)

s _ qn,p if vnm > O,

qn,p = _ q,_m-1 if v,,,,p < 0,

17 f qn@-I if v.,p > 0,

q;*'P = _ qnm if v,,,p < 0.

After spatial discretization the model equation take the following semi-discrete

_rm:

E w qnS,p N
dqn,p + un q_'p _ qn,p + - q_,p

dt 'P Ax vnm Ay

= :Dn,p(q,',,+l,p-2qna,+qn-l,p qn,p+l-2qna,+qn,p-1)zxx2 + + S;,% (3.8)

The application of center difference approximation of the time derivative yields

the following discrete analog of the two-dimensional transport model:

r ,',.1 " ., "
lP qn,p 1

At = --2 un,p + un,p Ax

S I m+l f N 1m+l )

qnmJ --[qn,pJ r s 1" r _v1,,,
[q"'P] KyLq"ml-_- Vn'P "Eym _ Vn,p ._

[ _m+l m+l ,,,,m+ 1 ,.,rn+ 1 m+l _m+l

-- _n,p I ¢ln+l'p -- 2qn'pAx2 "4- '_n-l,p q_ _n,p+l -- 2qn,PAy2 "-b ¢/n,p-1

-- qn-l,p qn,p+l 2qn,p + qn,p-1 ) .q_ m
+ q;i+x,p 2q_,p+

f;,p,Ax 2 + Ay2

(3.9)

where At is the time discretization step, and the superscript m - 0, 1, 2,... is used to

identify an instance t -- (m + 1)At for which the solution of equation (3.9) is sought.

After collecting like terms in (3.9) obtain the following equation for a single spatial

mesh point (n, p):

A^m+l _m+l f"?_m+ 1 r-_ m+l rn
+ Btln, _ + .-.tin+l, p + .tJqn,p_ 1 + Eo::,p+l.,, =tln- l,p

14



m m m - D " --Aqn_l, p q- Gq.,p - Cq.+l, p qn,v-a

where the coefficients are equal

E qn,"p+1 + .f .,p , (3.10)

A = AI+A2,

B = B1 +Bz,

Ay

C = -_.+I_2Ax,

D = D1 + D2,

Ax

E = -:D,_,p+l 2Ay'

G = G1 + G2, (3.11)

where

and

_ _1v
A1 - 2 '*'PAx'

AxAy :D.+I,pAy +
B1 - At + 2Ax

+ D,_,p _ +

D1 - :Dn'pAx
2Ay '

AxAy T),_+l,pAy
G1 -

At 2Ax

- 7_.,p _ +

T)n,p+lAy

2Ax

T)n,p+ l A y

2Ax

---_,Un,p < O,A2 = _ > 0,
2 _ lZn,P

_ < O,
02 = -- 2 _ Vn,p

> O,2 _ Vn,p

B2 = Ba + B4

{ < 0,Ba = __,pzx_ u >0
2 _ n,p

v_-.._z_x v ,.-nB4 = --v_'P_x v >0
2 _ n,p

G2 = Ga + Gay

(3.12)

15



--u_2--_', Un,_ < O,G3 = ""--_-_, u._, > 0,
2

G4 = - 2 , < 0, (3.13)
_ >0.

2 ' Vn,p

The discrete transport model (3.10)-(3.13) is unconditionally stable and is free

of non-physical oscillations. It has a second order accuracy in the time domain.

Though, application of upwind differencing for convective operator results in only

first order accuracy in space, the absence of numerical oscillation for all values of

model parameters and discretization steps makes model (3.10)-(3.13) very attractive

from the practical point of view.

3.1.2 Discrete model in the matrix form

The system of N x P equations of the form (3.10)-(3.13) describes a contaminant

transport process within a spatial domain 0 _< x _< (N - 1)Ax, 0 < Y -< (P - 1)Ay.

However, its exact appearance depends on how these equations are arranged into a

single matrix equation. We have implemented a node numbering algorithm known as

D4, or altering diagonals method (Aziz and Settari, 1979), which allow a particularly

efficient direct solution of the model equation. According to this method, an equation

describing each node (n,p) enters as i-th row of the overall matrix equation (3.2),

where determination of i is summarized in Table 1.

The discrete transport model can now be written in the matrix form as

Axqm+l = b, (3.14)

= In m+l [ 1, N, 1, P) approximates the contaminant concentrationwhere vector qm+l i_n.p

distribution on the time step m + 1, AI is a sparse NP x NP matrix with at most

five non-zero elements on each row, and

b =. A_qn, + fro, (3.15)

where f,,, accounts for boundary conditions, and sources and sinks of contamination.

16



Even (n q- p) Odd (n q- p)

For (n + p) <_ N (n + p) < (N + l)

i = ("_22 1) 2_ - + p i --- --'2----NP(n-pW1)(n-p-3)4 -- P

ForN<n+p<P

i = N___2
4

- (N-1)_-N("+P)-I - n
2

Forn+p> P

i = _ + NP-N2-2N

4 2

.{._(2N + P-n-p+4)(n+p-P)
4

-(n + 1)

For N+ 1 < n+p< P+I

i NP N 2
-- 2 4

+_+_2 N + l- n

Forn+p> P+l

i=NP-P+p

__ (N+P--(n+p)+l)(N+P-(n+p)-l)
4

Table 3.1:D4 Node Numbering Algorithm

3.1.3 Solution of the matrix equation (3.14)

The alternating diagonals node numbering method produces the discrete model (3.14)

which can be partitioned as

[ ]All A12 qm+l = (3.16)

A2, A22J 2qm+l

where All, A22 are diagonal matrices, and A12, A21 are sparse matrices.

Special structure of equation (3.16) suggests a simple and efficient method of direct

solution of matrix equation(3.14). First, by direct exclusion transform the lower half

of the matrix equation (3.16) to obtain

[:1 ]
A sparse matrix equation

(3.17)

2 -- (3.18)A22qm+l = b2

of reduced order _-_ s now independently solved for 2qm+l using Gaussian elimination.

Given the solution of equation (3.18), 1qm+l is found as

I = A111bl _ A-XA _2qm+l 11 12tlrn+l
(3.19)
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where All is a diagonal matrix. Overall solution of (3.14) is now formed as

= [q_+ll (3.20)
qm+l [q_+lJ "

3.1.4 Simulation example.

For the cabin depicted in Figure 2 consider a two-dimensional height averaged ap-

proximation of the contaminant transport process. Assuming the laminar air flow,

the parabolic input and output air velocities, and additional parameters presented in

Table 2 we can calculate z-averaged air velocity distribution in the cabin as shown

in Figure 3. Here arrows follow the streamlines of the air flow, and there length is

proportional to the magnitude of the air velocity at a particular spatial point. The

maximum air velocity is equal 1 m/s and occurs in the center of the air duct. Note

that due to a large velocity gradients we have assumed D = 23 cm2/s, which is the

eddy diffusivity of carbon dioxide in air.

12.2 m

Figure 3.1: Simulated cabin geometry

Let us further assume that initially contaminant concentration in the cabin is zero,

and that at the time t = 0 a contaminant is introduced into cabin with the inlet air

stream at a known rate (Table 2).

Using this contamination scenario, we can calculate the evolution of the contami-

nant concentration distributions in the cabin. Results of the simulation 6 sec, 40 sec,

18



12.2 m

Figure 3.2: Height averaged air velocity distribution

2 rain, 4 rain, 6 min and 10 min 40 sec after the beginning of the emission are

shown in Figure 4. At 10 min 40 sec contaminant distribution has already reached

its steady state.

3.2 Three-dimensional model

Described two-dimensional design can be used to discretize the partial differential

equation (2.1) or (2.8) to obtain a straight forward implementation of the three-

dimensional transport model. However, the dimension n of the resulted system of

the form (3.2) can be very large. At the same time, the structure of the sparse

matrices A1 and A2 is more complicated in this case. Specifically, the width of the
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Figure 3.3: Model predicted evolution of the contaminant dispersion
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band in A1 and A2 can be substantial. Consequently, strait forward implementation

three-dimensional transport model can be quite computer intensive.

A significant reduction in computational complexity can be achieved following the

paradigm of the alternating-direction implicit (ADI) approach, which embodies the

idea of operator or time splitting. Such splitting allows the reduction of the original

problem into a series of simplified problems which must be solved consecutively on

each time step. For example, the Douglas method leads to the following numerical

implementation:

-A_ _xt At q'

( I- l-Az _xt qm+l =-Azqm- A--t

where q* and q** are intermediate variables, Ai is a finite difference approximation

of the spatial operator £:i, : i = {x, y, z}, where, for instance,

0 OuLx(') = DM Ox Ox"

Thus, instead of solving one large and complex system (3.2) we need to solve three

tridiagonal equation (3.21), which can be accomplished simply and efficiently.
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Chapter 4

Air Quality Monitoring Using

Kalman Filtering

A modeling of the introduction, dispersion, and removal of airborne contaminants in

an enclosed environment is very important. It summarizes our knowledge about the

transport process, and is especially valuable during the design stage, since it allows us

to predict what happens under different scenarios of chronic or accidental contamina-

tion, analyze the influence of different factors on the spread of contaminants, simulate

performance and limitations of air revitalization system, and use pre-recorded flight

data to recreate and analyze real events occurring on-board of the spacecraft. At

the same time, the model is n_erely a reflection of our current a priori knowledge

about physics of the air contaminants transport process, geometry of the volume of

interest, emission sources and removal devices. As a result, the quality of simulation

depends solely on the assumptions employed in the development of the model, and

completeness and accuracy of the input data.

In reality we almost never have all the required information and the adequateness

of the model is often in question. Furthermore, a real system is subject to stochastic

perturbation and information about some system parameters (such as eddy diffusiv-

ity) is inherently uncertain and incomplete. All this decreases the value of the results

based solely on a priori knowledge and input data.

The most important information about air quality in a habitat is the concentration
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distribution of the airborne contaminant, pre-selectedfor monitoring. The task of

generatinga real (or near real) time contaminant concentrationestimatescan only

be accomplishedusing on-line concentrationmeasurements.However,oneshould be

awareof the limitations of themeasurementdata along. Practical considerationsallow

to deployonly a limited numberof sensors.Eachsensorproducesspatially localized

(i.e. pointwise) information, which is corrupted by noise,and requiresfiltering. The

measurementsfrom different sensorsmaynot be in completeagreementrequiring data

fusion and reconciliation. And finally, localized(pointwise) measurementdata must

be extrapolated over the entire habitated volume to obtain complete contaminant

concentrationdistribution.

All theseservesasa motivation for developingthe air quality monitoring system

basedon both on-line measurements,and the verifiedmodel of the transport process.

The integration of the measurementdata and the model canbe achievedwithin the

framework of the well establishedKalman filtering method. According to Kalman

filtering paradigm the uncertainties of the model and measurementsare represented

by the additive stochasticwhite Gaussianperturbation. First, lets considerthe mod-

ification of the transport model. For the transport model in rectangularcoordinates

(2.2), the modifiedstochasticmodel of the processtakesthe following form:

Ouq Ovq Owq
Oq + + + - (_7 . DMVq) + F + c(x,t)w(x,t), (4.1)
o-7 Oz

q(x,0) = q0(x),

E[q°(x)] = 0, E[q°(xl)q°(x2)] = po(xl, X2),

X, Xl, X2 E _"_,

with an appropriate boundary conditions, where c(x, t) is a deterministic function of

noise intensity, w(x, t) is Gaussian white (in time) process with zero mean, and

E[w(x,, t)w(x2, v)] = Q(x,, x2, t)5(t - 7),

where E[-] and 5(-) are the expectation operator and the Dirac delta function, Q and

p0 are nonnegative function, symmetric in the sense that Q(xl, x2, t) = Q(x2, xl, t),

and po(xl, z2) = po(x2, Xl)-
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The process model (4.1) must be further supplemented with the model of the

measurement system, reflecting our knowledge on how the actually available sensors'

output relates to the state of the process q. In a general form, measurement system

can be represented as

z(=,t) = h(q,t) + v(=,t), = e £t, (4.2)

where z(x, t) is the output of the measurement system, h(q, t) is a spatial measure-

ment operator (usually linear), and v(x, t) is Gaussian white process independent of

w(x, t) with zero mean and nonnegative symmetric covariance function R:

E[v(zl,t)v(z2, 7")] = R(Zl,z2, t)&(t - T), Xl, X 2 E _"_.

Currently available sensor usually can provide only pointwise readings. A general

model of the measurement system (4.2) in this case take form

z(xj,t) = h(q(xj,t),t) + v(xj,t), j = 1,...,l,

where xj is a sensor's location, and l is a total number of sensors.

The level of the model and the measurements uncertainties is determined by the

covariance functions Q and R. The choice of the measurement noise covariance matrix

R is made based on the careful study of the sensing instrumentation in the controlled

conditions. The covariance of the model noise is chosen at the model validation

stage and depends on how well the model reflects the real process. After initial

determination of Q and R they are often viewed as a design parameters, and can be

further adjusted to obtain desired estimates.

A theory of the Kalman filtering for distributed parameter systems (Tzafestas,

1982; Ray and Lainiotis, 1978) can be readily applied to the system (4.1)-(4.2).

However, resulted distributed Kalman filter equation, and an associated nonlinear

distributed Ricatti equation must eventually be transformed into a discrete form to

enable a numerical solution of the filtering problem.

Alternatively, the Kalman filtering can be applied to a discrete analog of the

distributed parameter system (4.1)-(4.2) to begin with. Though not as theoretically
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sound,this approachpresentssomepractical advantagessinceit is lessmathematically

involved, and is moregeneralin the sensethat it leadsto an implementation of the

Kalman filter which is lessdependenton the changesin the processmodel.

The discretization of the stochasticmodel (4.1) concludesin a discrete analogin

the form of either a single implicit equation (3.2), or a systemof implicit equations,

suchasthe system (3.21).

First, consider the caseof implicit equation (3.2), appropriately modified and

supplementedwith the discreteanalogof the measurementequation (4.2):

Alqm+l = A2qm +.fro + C(m)wm, (4.3)

qo = qO

zm+i = H(m + 1)qm+l + Vm+l (4.4)

where C(m) and H(m+l)q,_+l are discrete approximations of c(z, mAt) and h(q, (m + 1)At),

and z,_+l is a measurement vector corresponding to z(z, t); wm and v,,,+l are uncor-

related zero mean white Gaussian sequences such that

E[wjw T] = Q(m)5(j- m),

T
E[vj+,Vm+l] = R(m + 1)_(j - rn),

where Q(m) and R(m + 1) approximate functions Q(Xl, z2, mat) and R(Xl, x2, (m + 1)At),

and 5(j - m) = 1 if j = m and zero otherwise.

The traditional Kalman filtering require that the model be given in the explicit

form. If matrix A1 in non-singular for all m, the implicit model (4.3) can be rewritten

in an equivalent explicit form, and the traditional Kalman filter can be applied to

generate the optimal estimates of qra+l" However, there is a strong motivation to

avoid matrix inversion step in a filtering algorithm. If for some ra matrix A1 is

ill-conditioned, its inverse is calculated with significant error, unless some special

measures are built into the filtering algorithm. This would usually involve on-line

calculation of the condition number of A1 and application of iterative improvement

in order to calculate the explicit model equation with acceptable accuracy, or the

use of a singular value decomposition as a first step in calculating matrix inversion.
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Furthermore,the systemmatrix AIIA2 of the equivalent explicit representation must

be treated as general (full) matrix, since inversion destroys matrix sparsity. Therefore,

application of the traditional Kalman filtering can leads to significant computational

errors should the matrix A1 be ill-conditioned, and results in an inefficient algorithm

due to the need to manipulate full (non-sparse) matrices.

We have previously proposed an implicit Kalman filtering method (Skliar and

Ramirez, 1995a, b), which does not require matrix inversion, and when applied to a

sparse implicit system is an order of magnitude faster than the traditional Kalman

filter, making it a superb method for on-line estimation of the contaminant concen-

tration.

According to the implicit Kalman filter method, the optimal concentration esti-

mate q,,+ltm+l is given by the following implicit Kalman filter equation:

Alqm+l[m+l = _]m+llrn "4-/)y(_ -_" 1) [2;m+ 1 -- Hl(m -.{- 1)_/m+l[m] (4.5)

for m - 0, 1, ..., where

_rn+llrn m_ A2_m,m + fm (4.6)

with q010 - _0, and the modified the measurement matrix Hl(m + 1) is determined

by the linear equation

HIA1 = H. (4.7)

The implicit Kalman filter gain L_(m + 1) is equal

L_(m + 1)- _ T-- Pm+llm+lH1 (m + 1)R-l(m + 1)

_ y T 1 _ T-Pm+llmH] (m + 1) [Hl(m + )P._+llmH, (m + 1)+ R(rn + 1)],[4.8)

y
where the predicted estimation error covariance matrix Pm+ll,_ of an auxiliary vari-

able y(m+ 1) - Alq,_+l is found as a result of the time propagation of the estimation

q
error covariance Pml,_ of the concentration qm according to equation

Y = A Dq _TPro+lira 2_r mlm2"L2 + C(m)Q(m)CT(m) • (4.9)

y
The estimation error covariance matrix Pm+llm+l satisfies the covariance measure-

ment update equation

p_m+llm+ 1 _ _ _ T--Pro+lira - Pm+llrnH1 (m -}- 1)
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X[Hl(m + 1)P_+llmHT(m + 1) + R-l(m + 1)]-lHl(m + 1)P_+11,_,4.10)

or equivalently

Y [I Ly(m + 1)Hl(m + 1)] y-- - P,n+O_"Pro+lira+ 1 -- (4.11)

q of the concentration estimate qm+llm+l isThe error covariance matrix Pro+lira+ 1

y
related to the covariance matrix Pm+xlm+y by the following linear matrix equation:

y q T
Pm+ll_+l = A1Pm+llm+IA1 • (4.12)

The implicit Kalman filter generates the minimal variance estimations of qm+l,

and is theoretically equivalent to the traditional Kalman filtering, provided the inverse

of matrix A1 exist for all k. However, it provides a basis for a new implementation

algorithm for the implicit system (4.3) which does not require matrix inversion. This

makes it a superior approach when matrix A1 is ill-conditioned or sparse.

We now formulate an algorithm to determine the optimal estimate of the state

qm+l of the system (4.3), (4.4) using the implicit Kalman filter. Given zm+l, q,ntm

and L_(m + 1),

1. Compute _tm+llm by propagating qml,,_ according to equation (4.6).

2. Solve the linear matrix equation (4.7) for the modified measurement matrix

Hl(m + 1).

3. Solve the linear equation

AlClrn+llm+l -- ])ra+llrn _'-/-¢y(k 21-1) [Zm+l - H,(m + 1)_/m+llm] (4.13)

for the optimal estimate qm+ll,n+l"

If matrices A1 and H are time invariant, matrix H1 needs to be calculated only once.

q
The Kalman gain Ly(m+ 1) can be calculated in the following ways. Given P,nlm'

y q
1. Compute Pro+lira by propagating Pmtm according to equation (4.9).

2. Compute the implicit Kalman filter gain using equation (4.8).
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y
3. Calculate Pm+lJ,n+l according to equation (4.11).

Note that in order to initiate the gain calculation algorithm on the next time step,

q from the linear equation (4.12), using direct or iterativewe need to find Pk+llk+l

methods of solution.

Turning attention to a discrete analog of the stochastic transport model (4.1)-(4.2)

in the form of the system of implicit equations we immediately observe that after

appropriate modifications system (3.21) can be written a single implicit equation

where

IA,Q,,,+I = A2Q,n + + 0 Win, (4.14)

0

Lq,,,J

0

AI= {A_J}=

(-A_- -_) 0
2--_ (-A,-_) 0
0 _--_ (-A,--_)

0 0 (A,+2A,+2A,--_)
0 0 -A_

0 0 -Az

and

As = (A_J}=

2_m+ 1 -- [0 0 H(m Jr- 1)] Qm+l -}- i_m+l" (4.15)

The system (4.14)-(4.15) is in the same form as (4.3)-(4.4), and the implicit

Kalman filter is directly applicable. Resulted algorithm can be further simplified

if a special structure of (4.14) is taken into account. After obvious transformations,

the estimation of the contaminant concentration is determined from the sequential

solution of the following tridiagonal equations:

28



2 ) q,, 2 q** + L2[z _ Hl_lrn+llrn],-A_, _t = -Az4mlm At

2 **

(-Az - -_) Clm+llm+l -- -Azqmlm - --_q + L3[z- Hl_Im+llrn],
(4.16)

where the predicted estimation of the auxiliary variable y = A1Q is equal

•_/m+llm---- A223 qmlm -4- 0

A 33 0

(4.17)

The modified measurement matrix H1 = {Hlj} is found from the following linear

equation:

[Hll H12 H13]A1 = [0 0 H],

solution of which reduces to the solution of the following three linear tridiagonal

equations :

Hx3A 3 = H,
H12A212 H A32-- 13_i

HIIA] I -H12 A21.

The implicit Kalman gain Lm+ 1 ----[L T L T LT] T is equal

(4.18)

r _ r R(m ,Lm+l = Pm+llmH1 [H1Pm+llrnH1 -4- + 1)] -1 (4.19)

where

y
Pro+lira --

As before,

and

A13Dq A13 T
2 " mlm"_2

A23Dq A13 T
2 _' rnlrn_'2

A33Dq A13 T
2 "_ mlrn'-*2

+ 4CQC T A13Dq A23T
2 "_ mlm"_'2

A23Dq A23 T
2 " mlm"_2

A33Dq A23T
2 _mlrn_'2

Pro+lira,P_+llm+l : [I-- Lm+IHI] Y

y Q T
P,_+llm+l = A1Pm+llm+IA1 '

Q Q q

estimation error of Q.

A13Dq A33 T
2 "_ rnlm"_2

A 23 Dq A33 T
2 "trnlm_-_2

A33 Dq A33 T
2 _rnlrn"_-2

(4.20)

(4.21)

, i,j = {1, 2,3} is the covariance matrix of the
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Taking the advantageof the block-matrix structure of Az, the solution of the last

equation is reduced to a sequential solution of the following six tridiagonal equations:

11 q ._ [pro+lira+l] 11A1 [Pm+l[rn+l]ll-_ IT Y

Q A 1 -:-[Pm+l[m+l] 12 A] IrDQ ] II ,421Ti_l[Pm+llm+l] 12 22T y -- ['_ m+llm+lJ _'al ,

Q : ['_Ym+l,m+l] -- A_ I[vQ ]12 "432TA_ i [.pm_l. llm.l.l] 13 A33T 13 L" m"l" llm-l- I J "'A I

y
A22[_Q ]22A22T [Pm+llrn+l]22_/121 rD Q ]11 ,_21TL'_m+l[m+lJ "-_1 -- ['_m+l[m+lJ "rA1

21 Q [A 21 [DQ 112a22Tl T-A1 --1 j ,
y

[--m+l[m+lJ "r'A1 "- [--m+llm+lJ "r_l

22 Q [Pm+1,m+1113 A?3 T,-i I [Pm+l[m+l]22A 32T- A211 Q

A133 rvq 133A33T Y _,.,,,_,.,,,,,..,.,.j.-1 = [e,.,,.,,.,.,,,,.,.,]L-,, m+llm+lj "_Zl

A 32 rvq 123A33T __ [A312 roq 123 A33T l T--_'_1 L--m+llm+lJ _-A1 L.,. m+llm+lj z'= 1 J

(4.22)
pQ qwhere [ re+lira+l] 33- Pro+lira+l"

We are now in the position to formulate an algorithm for estimation of the contam-

inant concentration qm+l based on the measurement data (4.15) and the transport

model (4.14). Given Zm+l, qml,_ and L,_+z,

1. Compute Ym+11,- by propagating qml,- according to equation (4.17).

2. Successively solve three tridiagonal matrix equations (4.18) for the modified

measurement matrix HI.

3. Successively solve three tridiagonal equations (4.16) for the optimal estimation

am+lira+l"

The calculation of the gain Lm+z of the implicit Kalman filter follows the following

algorithm:

y
1. Calculate Pro+lira according to equation (4.20).

2. Calculate the implicit Kalman filter gain using equation (4.19).

v
3. Calculate P,,+llm+l according to equation (4.21).
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4. To initiate the gain calculation algorithm on the next time step, sequentially

solve six tridiagonal matrix equations (4.22) for the error covariancematrix

q
Pm+10m+l"

Despite the complex appearance, presented implicit filtering algorithm is very

effective for the large dimension dim qm = n, and is convenient for computer imple-

mentation. If the number of sensors l << n, then the computer implementation of

each the implicit filtering algorithm requires on the order of n 2 floating point opera-

tions, while the traditional explicit filter will require O(n3). Additionally, all linear

systems that need to be solves in the course of implicit filtering have the same simple

tridiagonal form, and a single solution engine can be used to implement the proposed

algorithm.

Finally, it is well known, that for real-time applications of the Kalman filtering

it is advisable to use a square root implementation algorithm, which has a superior

numerical stability. The details on the square root implementation of the implicit

Kalman filter can be found in Skliar and Ramirez (1996).
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Chapter 5

Sensor Placement for

Contamination Detection

A discrete time and discrete location algorithm for state estimation and the placement of

monitoring devices (sensors) in a distributed parameter contaminant simulation is described,

implemented, tested in a simple contaminant scenario, and compared to Extended Kalman

filtering results. The state estimation portion of the algorithm is a suboptimal variation of

Extended Kalman Filtering. The sensor placement portion of the algorithm is based on the

minimization of the trace of the prediction error covariance matrix. It utilizes variables

from the suboptimal state estimation portion of the algorithm with a yes/no type of

switching algorithm to optimize the placement and number of the sensors in a set of pre-

specified locations.

5.1 Introduction to sensor placement

Determination of the optimal number, type, and placement of sensors in a habitat is

important to both ground-based applications and future space applications. "Tight"

terrestrial buildings do not allow the free exchange of building air with the outside air,

resulting in a buildup of stale air and potentially harmful toxicants in the building.

Monitoring devices in the building can alert the building supervisors to high levels of

toxicants and indicate when the building must be ventilated, but these monitoring devices

must be placed in locations which can yield appropriate and useful information. It is

presently not feasible from either a cost or a logistics stand-point to place sensors

everywhere in a building that designers or operations personnel may deem them desirable.
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Spacehabitatscan be considered "tight" buildings, but with the added constraint that

they cannot be ventilated with relatively clean outside air, the time-honored mitigation

measure for ground-based buildings. It is therefore important to detect potentially harmful

buildups of toxicants earlier than in terrestrial buildings, and alternative mitigation steps

must then be taken. The increased detection requirements in space habitats increase the

complexity of the monitoring system; but once again, sensors cannot be placed everywhere

in the habitat. In addition to the obvious cost of the sensors, the cost of the information

processing equipment, the limits on the physical placement of sensors in the habitat, and the

cost to transport the mass associated with the sensors (from the Earth to the space habitat)

motivates the space habitat designer to minimize the number of sensors used in the

monitoring system.

5.2 Korbicz sensor location algorithm basics

A prospective algorithm for sensor location has been developed. It is based upon the

algorithm, developed by Prof. Jozef Korbicz (1986, 1988, 1991) and, uses Kalman Filter

system observation techniques to place a limited number of sensors at selected locations in a

two-dimensional area. This analysis technique can be expanded to three-dimensions but

with more intensive computations. (The contaminant concentration in a compartment

volume has been traditionally averaged over the height of the compartment so that a two-

dimensional analysis can be performed on a three-dimensional space.) The algorithm

minimizes the contaminant concentration prediction error at selected points in the analysis

area, based on the sensor readings of a specified sensor configuration, and thereby increases

the estimation accuracy of the contaminant concentration. The algorithm is able to

determine a near-optimal placement of a specified number of sensors in specified locations,

given the dispersion of a contaminant as described by a distributed parameter model, and

given the desired concentration monitoring accuracy. The suboptimal algorithm of Korbicz

is reportedly more computationally efficient than previous algorithms due to its

approximation of the prediction error covariance matrix.
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A distributedparametermodelis a mathematical model of a system that is described by

a set of partial-differential equations. This is contrasted to a lumped parameter model,

which is a mathematical model of a system that is generally described by a set of ordinary

differential equations. The distributed parameter model attempts to describe the system in

terms of the contaminant dispersion and removal processes in both time and spatial location,

hence the dependent variables are functions of more than one independent variable, and

partial differential equations are required. The lumped parameter model attempts to

describe the system in coarser terms of the bulk flows and movements of contaminants in

the system as a function only of time, discounting the distances between and within the

"well-mixed" lumped nodes; hence, the dependent variables are only functions of time, and

only ordinary differential equations are required.

While the Kalman Filtering algorithm can be used on both lumped parameter systems

and distributed parameter systems, the filtering algorithm described below is developed

around and will use a distributed parameter system. But in order to simulate the spread of

contaminants in the model of the space habitat at discrete times, the system model has been

basically reduced to small lumped nodes. The concentrations at these nodes are functions

of both time and the distances to the adjacent nodes.

The equations have been coded for the suboptimal filtering algorithm (J. Korbicz,

1986), and for the sensor placement algorithm described in subsequent papers (J. Korbicz et

al., 1988; J. Korbicz, 1991). The suboptimal filtering algorithm differs from a standard

Kalman filter in that it approximates the prediction error covariance matrix through a

discrete, time-stepping algorithm. The suboptimal filter equations generate state estimates,

prediction and filtering errors, and the prediction error covariance estimator from given

measurements.

The sensor location algorithm determines the optimal placement of N' spatially-fixed

sensors to be distributed over N potential locations (N3N ', maximum of one sensor per

location) in a 2-dimensional spatial configuration to monitor the distribution of one chemical

species concentration. The methodology of the measurement location optimization is to

minimize a cost functional, based on the trace of the prediction error covariance matrix.

The sensor location algorithm uses data generated by the suboptimal filtering algorithm to
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generate adjoint variables, which are the dynamic constraints for the minimization of a cost

functional.

The sensor location algolithm uses a yes/no decision algorithm for the optimal

placement of N' sensors in N locations. A switching function, based on the Hamiltonian of

the optimal sensor problem, determines whether a sensor is or is not placed at a specified

location. With the switching function having yes or no as the decision options, this

measurement problem can be considered as a "bang-bang" control problem.

Inputs to the Korbicz Sensor Location Algorithm include the possible sensor locations

within the habitat, the habitat system's distributed parameter equations (contaminant

generation and spread), the level of noise that a sensor generates, the level of "process

noise" from the habitat, and the required monitoring accuracy. Outputs from the Korbicz

Sensor Location Algorithm are the minimum number of sensors required to meet a specified

filtering accuracy (one aspect of a minimum cost sensor configuration), and the specific

placement of those sensors to achieve that accuracy.

The system process noise from the habitat is the amount of contaminant concentration

variability acknowledged in the dynamics (generation and spread) of the contaminant in the

habitat due to airflow variability, disturbances, etc.

Example

A simple two-dimensional example will be used to demonstrate how an optimal sensor

location algorithm works. Assume that the habitat atmosphere layout is rectangular as

pictured in Figure l a. The atmospheric system is gridded to allow observation of

contaminant concentration over spatial locations within its whole area at n = 30 locations

(grid intersections). A contaminant generation and dispersion model is applied to the

habitat. The possible sensor locations are the five circles (N = 5). These are all of the

permissible locations of sensors, denoted by the location vector x_* =

((1,3),(2,1),(3,5),(4,3),(5,2)). The locations may have been chosen for a variety of

engineering and other reasons.
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Figure l. Movement of Sensors Using Sensor Location Algorithm

The algorithm continues by guessing at the number and placement of sensors in a

sensor configuration. The habitat model has a certain amount of confidence, reflected in the

system process noise, and each sensor has a defined noise level (noise generated by the

sensor). Our initial guess is to place two sensors, N' = 2, at the locations marked with X's

in Figure la, corresponding to the vector __= (1 0 1 0 0). The placed sensors are used to

monitor the habitat in a simulation, and an estimate of the concentration levels at selected

points in the habitat (states) are calculated. The adjoint variables are calculated and the

accuracy with which the sensors monitor the contaminant concentration can be judged by

comparing the prediction error to a pre-determined error threshold.

Other monitoring parameters can be used as auxiliary measures, such as comparing the

estimated contaminant concentration levels against the known levels of the contaminant

concentration at the points, calculating the percentage of maximum peak concentration

predicted versus the known percentage of maximum peak concentration, or calculating the

Hamiltonian of the system. For our initial placement of sensors, the scalar Hamiltonian, H,

is calculated to be 8. Maximizing or minimizing the Hamiltonian of a system corresponds to

minimizing or maximizing a cost functional (such as the prediction error), according to the

discrete maximum principle of Pontryagin. This will be described in more detail later; for
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now let us assume that we want to minimize the prediction error, and therefore minimize

the Hamiltonian.

Using a cost function based on the state prediction errors, the sensors are then shiited

(via yes/no choices) to other locations, __= (0 1 0 1 0), to provide a possible increase in

accuracy until shiiting of the sensors no longer helps, as shown in Figure lb. The resulting

error of this "best" configuration is then tested. The resulting value of the Hamiltonian in

our example has been reduced to H = 6. If the desired accuracy (comparing predicted or

estimated concentration states against the model's actual concentrations) is attained using

some computed configuration with that number of sensors, then the number of sensors is

decreased and the algorithm rerun until the desired accuracy is unattainable. If the desired

accuracy is unattainable with using only two sensors (our desired accuracy threshold

corresponds to H < 4), then three sensors can be tried, _ = (0 1 0 1 1), as shown in Figure

l c. This testing and retesting is continued until one of the previous successful

configurations is revisited. The resulting set of sensors is a feasible suboptimal

configuration of the number and locations of the sensors as determined by the Korbicz

algorithm, and the algorithm stops. Our example found the Hamiltonian to be H = 3 for our

third configuration, which reflected a minimized error in the state prediction estimate.

5.3 Simplified space habitat model

A simple, distributed-parameter, contaminant transport system model based on a model in

one of Korbicz's early papersJ. Korbicz, 1986 was used as a baseline model. The simplified

model consists of a tubular space, with eleven equal-di_;tant "grid" points at which the

contaminant concentration levels are desired to be known or estimated. This is illustrated in

Figure 2. The points are Ax = 0.1 distance units apart. This is a very simple model, but can

be considered to be similar to the interior of a cylindrical habitat, inside of which a

contaminant is dispersing. In this model, the primary transport mechanism considered is

diffusion, with a small factor of removal of the contaminant. This small contaminant

removal might be considered as deposition of the contaminant on the walls of the habitat.
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Figure 2. Simplified Discrete Habitat Model

The transport of the contaminant within this non-linear system is described by the

continuous model,

_y(._t)_Dx_2y(._t)_bx y(._t) t-u(._t)+w(._t),
_t ax2 1+[y_ t

(change) = (diffusion) - (deposition)+(control)+(noise)

where y(_,t) is the contaminant concentration vector at locations x_ at time t.

time model of the continuous system of Eqn. (1) can be approximated by,

y(,_,k+1)=Nx(.v,,_,k)+A(a_,k)x"(,_,k)+B(,_,k)x,,,(,_,k),

wh_e,

Nx6,,_,k)=.V_,k)+At×tD ×O2ytZ,k) _,_,k) /

A(_,k)=At×I,

B0_,/,)=I.

(5.0

The discrete-

(5.2)

(5.3)

(5.4)

(5.5)

The system was initialized at concentration values ofy($.,k = 0) = 0.4. The diffusion

coefficient was set to D ffi 1 and the removal coefficient was set to b = 0.05, essentially

removing the removal term from affecting the contaminant concentration (but still

accounting for it mathematically). The discrete, white, gaussian system process noise,

_), was specified to have a mean of zero,

E[w_ k)]=0, (5.6)
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and a (discrete) variance of o_w = 0.0016, resulting in a covariance matrix of,

, l 0"0016 0 l
Q(s,x,k) = "..

0 0.0016
(5.7)

The values of Q reflect the fact that the standard deviation of the model uncertainty of

each state is _w = 0.04, or 4% of the steady-state values of the states, which are at

concentrations ofy(_..,k = **) = -1 at steady-state, w(_,k) is also independent over time.

A step input contaminant flow to the system was input at the X_l I location at time t =

0.01 see., and the contaminant concentration was held at unity for the duration of the

simulation, for,

y(_ll,t_O.O1)=l. (5.8)

Other than the step input, no "control" inputs were used (u(_..,k) = 0). The equations used

to calculate the linearized response are (.4 is a tri-diagonal system matrix),

)'($., t) = A × y, (5.9)

where,

h

A_2 2 _2

/9 •

&x2

0

°

A_ 2 (5.10)

39



y(._ k)

The removal term, b x 1 + _(._ k_ ' from Eqn. (3) was lineafized into b × b(_g2k) by letting

[p(._k)[ --- 1, the idealized steady-state value of ally. The last row of A was set to zeros only

for the simulation of the step input in the contamination scenario so as to not diminish the

step input level; the non-zero system model values were used for the input to the Kalman

Filter.

Because this simple system is so well connected, it is observable using only one sensor

at any location. This was tested by examining the rank of the observability matrix (G.J.

Smith, 1995). This system brings out an important aspect of testing for observability. It

was necessary to normalize the system matrix of Eqn. (10) to accurately test for

observability; otherwise, the rank of the observability matrix was calculated to be less than

full because of the cutoff tolerance of the rank testing subroutine. Also, even though this

system is observable with using only one sensor, that does not mean that all of the system

states can be accurately estimated, as we shall see later in this paper.

5.4 Extended Kaiman filter algorithm

The Kalman Filtering technique is a good method to obtain state information about states

which are not directly measured, and is used as a baseline algorithm for the example. The

Extended Kalman Filter is used for nonlinear systems, as compared to a basic Kalman Filter

which is used for linear systems. Using the methods outlined in (W.F. Ramirez, 1994), an

Extended Kalman Filter was written, using a least squares estimator, to estimate the

contaminant concentration state at each of the eleven locations. Candidate sensor locations

are at X_l, x_6, _Xl1. The sensors were specified to have a noise variance of 0.0025 (which

yields a standard deviation noise level in the sensor measurements of 0.05, in the units of the

concentration being measured).

Using the Extended Kalman Filter algorithm, steady-state values of the prediction error

covariance matrix and the Kaiman gain matrix were calculated, using groupings of two

sensors or three sensors, distributed one sensor per candidate sensor location maximum.

Using those steady-state estimation matrices in the filtering equations, estimates of the

states at each location were then calculated. The estimates of the states were compared to
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the "actual states", and the absolute values of those differences were summed and averaged

over the duration of the simulation. This average estimate error magnitude can be

considered one measure of the accuracy of the Kalman filter. Note that the trace of the

prediction error covariance matrix, calculated for each configuration, is not a good

representation of effectiveness of the estimation when one sensor configuration is compared

against another configuration.The base equations for the Extended Kalman Filter are

presented below, adapted from 1994). The system and measurement models are given by,

yCa ,k+ 1)=Fly,k)+ B(s,k)x,<x,k),

z(k) = NH (y,k)+ v(k),

(5.1I)

(5.12)

where y(_.,k+ 1) is the updated system state vector, z(k) is the measurement vector, w(x,k) is

the white gaussian system process noise vector, B(k)is a multiplicative factor matrix, and

,,(k) is the white gaussian sensor noise vector. The non-linear system is modeled by the

vector function Ffj,,k). The non-linear measurements are modeled by the vector function

NH(y,k). The system model variables are assumed to be defined at the locations x_, and the

measurement model variables are assumed to be defined at the locations x_*. The Extended

Kalman Filter equations are,

P(k)= M(k)- M(kl

._(ag, k) = F_,_,k -1)+ B(k - 1)x w(_,k- 1), (5.13)

ONH(k)ITIIo_))M(I(ONH(I)I T )Ill 6_NH(k) )Oy(k) )[k Ok,(k) j +R(k Oy(k) M(k),

ONH (k)] T × R -Ix(/,)= P(k)x ) (/,1,

(5.14)

(5.15)
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aF ,k T
+li(k)x _k)xlIT(k),

(5.16)

,_,k) = _(Ig, k) + K(k) x (I(k)-NH_, k) ). (5.17)

The vector y(x,k_) is the system state estimates before measurement (based upon the

previous estimate), and _(_g k) is the system state estimate vector after measurement. K(k)

is the Kalman Filter gain matrix. P(k) is the state error covariance matrix after

measurement, while M(k) is the state error covariance matrix before measurement.

5.5 Extended Kaiman filter results

The accuracy of the Extended Kalman Filter was first tested using sensors at each of the

three candidate locations, which yielded a time-averaged state error of 0.01343 (in the units

of the concentration). The state error is the average difference between the actual

contaminant concentration values, obtained from Eqn. (11), and the estimated state

concentrations, obtained from Eqn. (17), including the concentrations at all eleven state

locations in the average. For this sensor configuration, the trace of the prediction error

covariance matrix, tr(M), was 0.03256 (in the units of the concemration squared). Table 1

shows the results using the Extended Kalman Hlter.

Table 1. Results of Extended Kalman Filter

Sensor

Placement

Average

State

Error

....................[1....1....1].............................0_01343. .......

.....................IL!.....!....o;I...........................o-_.?.o.5.........
!

......................[.!._..o__t.1................._......0..°.!2.4_........
i

i 0.01199[Ol l]
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Next, only two sensors were used to supply the measurement information required by

the Kalman Filter to estimate the states. The worst estimates were obtained when sensors

were placed at locations X_l & x_6, which yielded a time-average state error of 0.04205.

Sensors were then placed at locations Xl & X_l1, and the resulting time-average state error

was 0.01247, a significant improvement. The best estimates were obtained when sensors

were placed at locations g6 & X_l1, which yielded a time-average state error of 0.01199.

The plotted actual model concentrations and the estimated concentrations for this sensor

configuration are shown in Figure 3. This sensor configuration was even better than the

simulation run using three sensors. This is probably because the weightings being used

place too much emphasis on the sensor measurements in our simulation. Heavier reliance

on sensor measurements are good during disturbances, but not good during steady-state

conditions.

From these results, it is seen that it is important to have a sensor at the location of the

contaminant source (highest concentration). With one of the two sensors placed at X_l 1,

placing the other sensor at location _x6 yielded only slightly better results than placing the

other sensor at location _Xl.

5.6 Korbicz suboptimal filtering algorithm

The algorithm for the suboptimal placement of the sensors is in two parts, the suboptimal

filtering algorithm equations and the suboptimal sensor placement algorithm equations.

5.6.1 Objective Function

The purpose of the suboptimal filtering equations is to calculate the estimated value of the

states, denoted by :_, such that the estimate is very close to the actual value of the states, y.

This is primarily accomplished by calculating a filter gain matrix, denoted by K, which

adjusts the computation of the estimated states. The filter gain matrix is based on the

minimization of the discrete linear Kalman filter performance objective function, ./,

j : _ ___)T x M-Ix(y-_)}_z-Hy)xR -! x (z- Hy) Tl j
, (5.18)
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Figure 3. Extended Kaiman Filter Estimate of States, Sensors at _x6 & X_l1,

Response to a Step Input at Location X_l1

where H is the measurement matrix, R is the covariance matrix of the sensor noise, z is the

actual measurements, and M is the prediction error covariance matrix (before

measurement). The first term of this objective function minimizes the deviation between the

new state and the state estimate before the new measurements are taken, while the second

term minimizes deviations between the actual measurements and their computed values

(W.F. Ramirez, 1994).

From the minimization of Eqn. (18), we obtain a value for Mr, which leads directly to

the computation of the filter gain K (that equation is stated later). The product of the filter

gain matrix K and the innovation error (difference between the actual measurement and the

predicted measurements) is then added to the system model predicted states to yield new

values for the estimated states. In short, the filter gain matrix adjusts the system model's

predicted states based on the measurement errors to yield better state estimates, which are
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then fed into the system model again. This algorithm, extracted from (J. Korbicz, 1986; J.

Korbicz et al., 1988; J. Korbicz, 1991) is described in more detail below.

5.6.2 Algorithm Equations for a General System

A system can be described by n states within a connected open spatial domain f_, where the

states are at spatial locations, x_,within the spatial coordinate vector, x_, in the spatial domain

of f_ (as before). For simplicity, we shall assume that the number of states equals the

number of spatial locations, and therefore consider only one contaminant.

The states of the system, y (an n-dimensional state vector), are discretized at iteration

step times k. The time iteration runs from 0 through K. The states are calculated using a

system model function, Nx (state update differential operator vector), and incorporating

system process noise. The system process noise weighting matrix function is denoted by B,

and w is the white gaussian system process noise of the individual states (the noise inherent

in the dynamics of the system). The state of the system at time k+l, y_,k+l) is equal to

the update differential operator given information from time k, Nx(y_k), plus system noise,

mw.

y ,k+ 1)= k=0,...,X (5.19)

The covariance of the system process noise is given by Q, and is assumed to be uncorrelated

across time.

Out of the n states, N states (discrete measurement points in the coordinate spaces) are

measured at times k, and the measurements are denoted by z, the observation vector at the

selected points. The selected physical locations are denoted by x*, which is a subset of x_.

The measurements z incorporate sensor noise denoted by v.. For linear systems, the

measurement matrix H transforms the states y into measurements z. For non-linear systems,

this transformation is denoted by NH0',k), a vector function at the measurement points.

z(_,k) = _(_[;,k)z_l_2,k) .... 2(_[ N,k)_ = NH(y,k)+v(k )= H x y(,_,,k)+v(k ). (5.20)
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Thestatevector at the measurement points is denoted byy*,

= T.
(5.21)

The white gaussian measurement noise v (the noise generated by the sensors) at the

instrumented locations is derived from R, the specified covariance of the measurement

noise, and is uncorrelated between sensors.

The state estimates, y, are calculated from the state propagation function, Nx, and

adjusted by the product of the filter gain, K, and the measurement prediction error, v (also

called the innovation error).

,_,k +l[k + I)= Nx (j3,,If, k[k)+ K_,k + I)× v(k + l). (5.22)

The innovation error, v is a vector which calculates the difference between the actual state

measurements, z, and the predicted measurements, NH_, k + 1[k),

v(k + I)= z(k + I)- NH_,k + ILk). (5.23)

The initial state estimate at the points in the system is set to Yo,

._ (_,/ilk ]k=o = .)3o(,I;). (5.24)

The system filter gain (weighting) matrix, K, is derived from the product of the prediction

error covariance matrix, M, the calculated trends of the state measurements as predicted by

the model, (N H)9 (a Jacobian matrix), and the inverse of the r' matrix.

K(If, k+l)=M(y,_,k + l[k)x (NH)_ X 1"-1 (k +l[k), (5.25)

where,
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= ayT lY=_=

_, (,_;._) ..

(5.26)

The F matrix includes the covariance of the measurement noise, R, and the prediction error

covariance matrix, M, adjusted by the predicted state measurement gradients, (N a)i.

F(k + Ilk)= R(k + 1)+ (NH) T xM(k + llk)x (NH)j,. (5.27)

If the measurement matrix H in Eqn. (20), has only one non-zero numerical value in each

row, and zeros elsewhere, then each measurement, z, corresponds to an individual state.

Therefore, the jacobian matrix (Nt_)_ from Eqns. (25) & (27), and expanded in Eqn. (26),

will have the same values as H.

The state prediction error, _(_x, k + 11k) _=_y(__,k + 1)- _(__k + IIk), is calculated using

the state estimate error, y(_x, kl k)= y(_x, k)-_(__ k}k), updating it by the calculated trends

of each state, (N,,)_ (a Jacobian matrix), and including a noise component.

_(_.k+]1,)=(Nx)_×_s.klk)+n(s.k)×_(s.k). (5.28)

where,

=
.. ..

_

(5.29)
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The state faltering error, _(g k + 1[k + 1), given by Eqn. (30), is comprised of the state

prediction error, _(._ k + 1[k), as adjusted by a filtering term, which is the product of the

filtering gain, K, and the innovation error, v.

_(_,k+11k+I)=./(,,k+ (k)- x(,,k +O×v(k+I). (5.30)

The initial state estimation error, _(_g klk), is set to be zero.

._(_,klk_k=o=o. (5.31)

The one-step-ahead prediction error covariance matrix, M, is approximated, which reduces

the required calculations. It utilizes the previous calculation of the prediction error

covariance and adjusts it by a literal interpretation of the error covariance using the product

of the prediction errors.

(5.32)

Since this filtering algorithm converts the system being analyzed fi'om a distributed tO a

lumped-parameter-type model, and thereby reduces the spatial cross-correlation of the

prediction errors, a "sliding-mean" (to be described later) is utilized to incorporate

neighboring prediction errors in the calculation of each prediction error.

M(,g,x',k + )Jk)= M(,g,,gf.,klk- I)

4= _¢(k__x,}_,,lilx,_y(_g, k4-1_c)×_yT(x°,

(5.33)

where Sx and Sx' are the correlation intervals around x and x', respectively, and T(k) =

The initial value of the prediction error covariance matrix is set to a value somewhat

dependent on the model being analyzed, though it should be set to a value larger than the

expected steady-state value,
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= (5.30)

These equations have been assembled in a MATLAB based code.

The time averaging factor, y(k) = _!_k+2,was chosen specific to the iteration initialization

of the algorithm code. Since k = 0 on the first pass through the calculation of M from Eqn.

(33), T(k)lkffi0 is initially equal to ½, and the first calculated value of M is equal to the

average of M0 and the integral term.

The purpose of the jacobian matrix used in Eqn. (28), and expanded in Eqn. (29), is to

take the amount of change predicted for the states (contaminant concentrations) over the

next iteration and apply that proportionally to other variables related to those states, such as

the state estimation error Y(L k] k), to obtain predicted values of those variables.

The portion of the state estimation algorithm which sets this method apart from other

state estimation algorithms is the estimation of the prediction error covariance matrix, as

given by Eqn. (33). The approximation of M incorporates a "sliding mean" into the

calculations. A sliding-mean across the space coordinates is used to calculate the individual

elements within the prediction error covariance matrix so as to partially reintroduce the

spatial correlation component of the covariance matrix back into the filtering calculations,

which were removed from the calculations when the system was "lumped" into discrete

points. The sliding mean used in this case is a spatially moving average of neighboring state

prediction errors, encompassing spatially adjacent neighboring points from the physical

habitat being analyzed. The estimated sample prediction error covariances within the range

of the sliding mean are added together then averaged.

5.7 Korbicz suboptimal sensor location algorithm

The following equations for the Suboptimal Sensor Location algorithm take the original

suboptimal filtering equations and incorporates a switching variable, _., which denotes

whether or not a possible sensor location in the Euclidian space actually has a sensor, as

determined from the proposed sensor configuration being investigated at that time (J.

Korbicz, 1991). Z is specified at each possible sensor location, with a value of 1 ira sensor

49



is present, or a value of 0 if no sensor is present in that location. The discrete adjoint

(costate) variables are then calculated from the associated Hamilton function. The filtering

and adjoint variables are used to calculate a switching function, which determines the new

values of _, (new sensor locations).

The revised filtering equations are approximately (only presenting those equations

which have changed and neglecting some unnecessary subscripts),

j=I,2,...,N.

(5.35)

The new measurement vector is the same as before, except that each possible sensor

location (from the Nlocations) lacking a sensor (at time k) has a value of_, equal to zero, so

no signal comes from that location. Mathematically, the constraint that only N' sensors can

be placed in the N locations can be stated as,

N

_j_=N', Zj_=Oorl.

J" (5.36)

For our space habitat example, we have added the constraint that a maximum of one

sensor can be placed at any possible location.

The prior adjustment to the state estimate formed by the product of the filter gain

matrix and the innovation error in Eqns. (22) and (30) have been tranfformed into more

complex equations due to the addition of the sensor switching variable for each possible

location, _,

(5.37)

+ +O= +(k)- Gf ,k+Ilk), (5.38)
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N' N t

c_,.k+U)=Z Z M6_,_,.k+_V,)×(N.(r.s,,kV,))_×_,._+.×r-'(sj,s,.k+,,)
i=1 j=l

x[=(,,,,,<+,)-;<,,,+,x.. +lV<)].

The variables are,

_j, = 1, if a sensor is located at the point xj at time k; 0, otherwise.

N' = number of sensors.

N = number of possible sensor locations (N 3 N').

NH = vector function at the measurement points, non-linear function of states.

(N H)_ = gradients of state updates (Jacobian matrix).

The scalar performance functional, J (in continuous form), to be minimized for the

sensor location portion of the algorithm is the integral of the cost function, _3, which has

been selected to be the trace of the prediction error covariance matrix,

(5.40)

This minimization seeks the reduction of the prediction error over the period of time being

analyzed. The trace of the prediction error covariance matrix is the sum of the squares of

each state's prediction error. This captures the largest values in the matrix, and yields a

positive value for each. Minimizing the trace reduces the error between the predicted states

and the actual states, and places the sensors at the locations which are associated with the

least overall system state estimation error.

The scalar Hamilton function of the system, H (in continuous form), is the sum of the

cost function, 5, and the product of the adjoint variables, 0p,_, 0, times the fight hand side

of the suboptimal filtering equations (the discrete forms are given by Eqns. (22), (30), and

(33)). The Hamiltonian in continuous form is,
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+ t_0 T (a:,,li_, t) x

i-

cgM_ ,x', t) l
at- JL (5.41)

The corresponding adjoint variable equations as calculated by Korbicz are,

,(_,_)=_ on_._
aX.)

b" N' ))_- -(N x)_ x O(,,k +llk + 1)+ y. _' (NH (F,,ltj,k + |k x _'j.k+l
i=! j=l

x MT(_x,_x,,k + l_k)x [Ig(_x,k +l[k+ 1)- ¢(x,k +llk+ 1)], (5.42)

_,(__,klk)=OH(.)
aS;(.)

=-(Nx) T x ¥(_,k +][k + 1)

_--..2-. O(tl,_[,k + _k + l)x _ y(x',l_k)dt_.Gx&. x
d (5.4s)

aM(.)

= -I + y(k) xO_.,x__',k + 1)

+ _ _ _j(k + l),k+ 1)- _,j,k+, X N H (.V,,!r_j (k + l),k + llk)_T
i=1 jffii

xr-l(_j (k + l),,i_i (k + l),k + _k)x ki,k+ 1 x (N H(y,ff,_/(k + 1),k + l_k)_y

x[_,¢r,k+1)- ,(z,k +1)]xz, (5.44)

with initial conditions,

,(x.k) k _ =0m_

_,(_k),_:o
(5.45)

(5.46)
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O(_,_,k)k=g = 0, (5.47)

where,

t_, _, 0 = adjoint variables,

tr[.] = trace of a matrix (sum of the main diagonal), and

K = final iteration count.

The above adjoint variable equations are integrated backwards from the ending time k = K

to k -- 1, calculating the switching function e_k for each point. The switching function as

calculated by Korbicz (J. Korbicz, 1991), is derived from the portion of the Hamiltonian of

Eqn. (67) that is linear with respect to _,. The switching function as calculated by Korbicz is

as follows,

X M* _,X_.tj (k d-1),k -t-l_k)x (NH (y,x__tj (k + 1),k-t-l_))_, x I-'-I (_j(k),k't" l[k)

x [z ___.'j(k +l),k +I)'- NH (.F',X_._'j (k + l)_k+ llk)_] j -1,2,...,N, k "" l, 2,...,K.

(5.48)

The switching function values, qk, are averaged over time (due to the E[.] term) for

each point. The summed values are then ordered from maximum to minimum, in the order

of the best estimated locations for the sensors. The N locations which have the largest

values of_ are then considered to be the best locations given the restrictions on the number

of allowable sensors (for that run). These are the sensor locations to be set (;q = 1) in the

next iteration run; sensors will be placed in those locations.

The optimal sensor locations are updated aRer each run until no further improvements

are apparent, as judged from the trace of the prediction error covariance matrix. It is then

decided whether the optimized sensor configuration will yield sufficiently accurate results

for the contaminant scenario. Korbicz states that the trace of the prediction error

covariance matrix can be used for this. Another measure of the accuracy of the sensor
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configuration is the average error between the estimated _tate_ and the actual states. This

average state error measure was used by the author in this study, as it gives a better

estimate of the errors that will be produced by the filtering algorithm.

If the optimized sensor configuration does not yield sufficiently accurate results, then

the number of sensors used in the configuration is increased after each run until the desired

accuracy is achieved. If the optimized sensor configuration does yield sufficiently accurate

results, then the number of sensors used in the configuration is decreased until no more

sensors can be removed without causing the configuration to fail the accuracy test. The

resulting number of sensors and locations of these sensors are considered to then be the best

estimate of the minimum number of sensors which will achieve the desired average accuracy

averaged over all selected locations.

Korbicz's algorithm formulation does not contain any existence theorem showing that

the approximations so arrived at converge to a solution which is globally minimal. The

filtering portion of the algorithm relies on a variation of the Kalman Filter theorems, but the

sensor location portion of the algorithm is a derivation using control theory principles, and

is demonstrated in an example in Korbicz's papers.

5.8 Suboptimal filtering and sensor location results

Using the previously specified contaminant concentration scenario, variations of sensor

configurations containing sensors placed at spatial locations X_l, x_6, _Xl1 were then applied

and analyzed using the suboptimal filtering and sensor location algorithm. A step input was

introduced into the simulations at spatial location X_ll at time 0.01 sec. The simulations

were run for simulated durations of 2 seconds, which was enough time for the states to

progress to near-equilibrium (the spatial locations were close together). Testing was

performed to establish the appropriate simulation time step and other algorithm parameters

which can be varied. The time step increment was started at the stability threshold and

reduced until the simulation results did not appreciably change, the time step finally selected

was 0.003 sec. The other parameter selections and variations are described in the next

section.
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The suboptimal algorithm is designed to assess the state prediction error of a number of

sensors in a particular configuration under investigation, perform comparisons between

configurations of sensors, and place those sensors in optimal locations. When three sensors

for three locations are being assessed, only one configuration is possible. When the use of

two sensors is being assessed for three possible sensor locations, three different sensor

configurations are possible, and the algorithm should indicate the best two locations for

those sensors, as will be shown below.

Sensor configurations were tested with sensors placed at each possible location and

then placed in groups of two. A full configuration consisted of the placement of sensors at

each of the three possible spatial locations (X_l, x_6, X_l1). In the terminology of switching

sensors on and off (1 or 0), this full configuration would be X = [1 1 1], since a sensor is

placed at each possible spatial location which can accept a sensor. The placement of

sensors only at locations X_l and x_6translates to X -- [1 1 0]. For each sensor configuration,

correlation neighborhoods of An = 0, 1, 2, 3, 4, 5, 11 were run. The average state error

was calculated for each run. A summary of the results for An = 4 is shown in Table 2.

Plots of the actual system states, sensor measurements, and the estimated system states for

An -- 4 and sensors at locations x6 and X_l1, are shown in Figure 4.

Table 2. Results of Korbicz Suboptimal Filter and Sensor Location Algorithm

Sensor Correlation Average Prioritized

Placement Neighbors State Sensor

[11 1] 4 0.01108 _ Jill 6 1].

........................[.!....i....ol...........................................4..........................0._.4.8.!........]......[.6.....!.!.....!i......

........................[.!...0..,!.I...........................................4..........................0...0).4.6.0........i......[!.!....6....!i......

[011] 4 0.01103 [11 6 11
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states, _ (...), and _;timated (- -) states (xl, x6, x11),

Nson_s - 2 -> [6 11], nbr = 4, kod)i_..m

IQi=0.0018,Ri- 0.00 
Itra_ P = 0.005972, ave. error= 0.01103

1.21Prioritizedmmsor kxmtlons= [11 6 I]

I-,. . i: . i :!
:::" .i. ; .!:.,._ ._. :.ii.! ,_. ;i i.,..'-i,! .._-.i.:i-i..:.,..., i,! -; ..= ::. ; :. _;: :- ,..-:_......_:_;::_:::i,..; :_:::...,. :_;:_,:; _.,.,,:._:_,_.,. ",,-.....,.::;-

, : . .-_ ..... _ • _." .. . . :: .. .
• ._ . .: ::.! : :,_ .' . .! .

0.4 ;_

0,2 | i | I i I I I I

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.S
tirne(sec)

Figure 4. Korbicz Suboptimal Filter & Estimate of States, Sensors at x_6 and Zl 1,

Response to a Step Input at Location Zl l, An = 4

When sensors were placed at locations x_6 and X_l1, and using An = 4, the average state

error over the 2.0 sec. duration of the simulation was calculated to be 0.0110, slightly less

than that calculated for the Extended Kalman Filter using the same sensor configuration

(previously 0.01199). The prioritized sensor locations calculated by the suboptimal sensor

placement algorithm was [ 11 6 1], which means that the algorithm indicates that the best

locations for two sensors for this step input scenario is in locations X_lI & _x6. As shown by

the remits fi'om the Extended Kalman Filter tests, these, are probably the best locations.

Placing sensors at spatial locations X_l & gll yielded a significantly greater average state

error of 0.0146.

If the simulation started off placing sensors at locations Xl & _x6, using _ = 4, the

resulting sensor location priority would indicate that placing sensors at x_6 & X_lI would
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yield better results. Even though the pair of locations X_l & gl I yields better estimates of

the concentrations when using Korbicz's Suboptimal Filtering algorithm, the pair of

locations _x6 & Xl 1 are the ones that actually yield the best concentration estimation results,

since the Extended Kalman Filter is the likely Filter to be used in the space habitat.

5.9 Sensor location algorithm discussion

There is a large variation in the algorithm selected prioritized sensors for correlation

neighborhoods An = 0 - 32. There are two main reasons for this, corresponding to two

mistakes in the formulation of the adjoint equations. The first mistake is in the sign of the

adjoint equations. The equations to calculate an adjoint variables, as derived in (W.F.

Ramirez, 1994), are,

0_(.)'

_,(_,klk)= + a/_(._____)
_C.)'

. a/4(.)
0(s, ',klk)=

(5.49)

(5.50)

(5.51)

The corresponding Korbicz algorithm equations, as presented in Eqns. (42), (43), &

(44), are of the opposite signs. Korbicz seems to have taken the calculations of the

continuous-time adjoint variables from (J. Korbicz et al., 1988), and to have simply called

them discrete-time (J. Korbicz, 1991). This sign reversal has two primary effects in the

calculation of the adjoint variables: 1) the adjoint equations have significant terms which

oscillate between negative and positive values, and 2) the Hamiltonian has to be maximized.

The first point is easy to see. For example, in Eqn. (43), if we assume that _ x(_(,kl k) is a

very small value, and that the (Nx) _" term is positive-definite such as in our simulation, then

Eqn. (43) simply changes the sign of _(_g klk). This also occurs for the calculation of

_/_,_gkl k).
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This sign reversal also forces Korbicz to try to maximize the Hamiltonian, when it

should actually be minimized because we want to minimize the cost functional. At one

iteration, the values of the _,_dependent portion of the Han_tonian could indicate that the

sensor location priority is one particular order, and due to the sign reversals, the very next

iteration will indicate that the sensor location priority is of the opposite order. The values

of_ bounce between extremes as the adjoints are calculated.

The second mistake is in the calculation of the adjoint equations. It seems that Korbicz

was not rigorous in his calculations; the use of the (-) placeholder in the denominators of

Eqn. (42), (43), & (44) ignores some complex subscript problems. In exandning Eqns.

(37), (39), & (33), we see that _ is a function of(}, which is a function of M (different time

index from M(-)), which is a function of _. Since :_ is therefore a function of _ down the

line, then it would follow that there should be a _ kl k) in Eqn. (43) since the Hamiltonian

H contains_ k_k)x_.

In addition,the calculationof IN_,x__,klk) seems to be oversimplified,ifKorbicz's

equation is taken literally (it can result in 0(g x__,kdk) being diagonal, with all of the terms

being the same). It is therefore surprising that the calculation of the correct sensor location

priority actually returns correct values, though only for large correlation neighborhoods.

5.10 Conclusions

Once the parameters are set correctly, the Korbicz Suboptimal Filter estimates the

concentrations of the contaminants (states) as well as the Extended Kalman Filter, for the

contamination scenario tested in this paper.

The Sensor Location Algorithm does not work properly until the correlation

neighborhood reaches some value, though this value is not presently able to be determined

beforehand. Once that value is achieved, though, the Suboptimal Filter portion may imply

that one particular sensor configuration is optimal (through examining the average state

error), while the Sensor Location Algorithm may select a different sensor configuration as

optimal (which coincided with the Extended Kalman Filter results in our example).
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The calculation of the adjoint equations in the Sensor Location Algorithm is suspect;

some terms may have been leit out or approximated, though this is not mentioned by

Korbicz. It was necessary to re-derive all of Korbicz's equations to determine the correct

equation multiplications, since the subscripted equations presented by Korbicz in his papers

are extremely confusing. When this re-derivation was performed, some neglected terms

were discovered. Before the Algorithm can be used with more confidence, the significance

of those missing terms needs to be evaluated. Until then, use this algorithm with caution.

The general methodology developed by Korbicz looks promising, but the sensor

placement algorithm equations presented by Korbicz are not rigorous, and they leave a

significant amount of variation in their application. We shall be recalculating the algorithm

equations in an attempt to obtain more consistant results.
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Chapter 6

Conclusions

To date we have developed two and three dimensional distributed parameter models

of contaminant transport, developed a new Implicit Kalman Filtering approach for

contaminant identification, and developed a suboptimal sensor placement algorithm.

This coming year we plan to work on a contaminant source diagnosis problem, develop

a three dimensional contaminant visualization program, use the Implicit Kalman

Filter to estimate three dimensional contaminant concentration profile, and develop

an optimal sensor placement algorithm.
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